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Abstract. We have examined the mean first passage time (〈T 〉) for a particle driven by colored non-
Gaussian noise. As we depart from the Gaussian behavior, the 〈T 〉 decreases regularly to a limiting value,
i.e., the barrier crossing rate can be accelerated to a limiting value by increasing the non-Gaussianity of the
noise. For the non-Gaussian noise driven process 〈T 〉 increases linearly with increasing damping constant
or noise correlation time. But this increasing behavior is almost exponential in nature for the Gaussian
noise driven process.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.70.Ln Nonequilibrium
and irreversible thermodynamics – 05.20.-y Classical statistical mechanics

Random processes are ubiquitous in almost all areas of
physics, chemistry, biology etc. Among the large number
of instances that one can name are the firing of neurons,
the nucleation of a phase associated with a phase transi-
tion, the triggering of an alarm, the occurrence of a major
earthquake, and the crossing of an activation barrier by
a reaction coordinate that converts reactants to products
in a chemical reaction, etc. These examples ranging from
the macroscopic to the microscopic, indicating that the ar-
rival problems are of interest at all scales. In many cases
it is not only important to know the statistics of occur-
rence of such events, but more specifically the statistics of
the first occurrence. This then leads to the study of the
statistical properties of the time that it takes a random
process to reach a specified state for the first time, that
is, the mean first passage time (MFPT). The inverse of
the MFPT is Kramer’s rate [1] of barrier crossing dynam-
ics. The literature for both is enormous and extends over
many decades [2–10].

An important phenomenon in the random processes
is the stochastic resonance (SR). It has attracted enor-
mous interest due to two important aspects. First, SR has
potential technological applications for optimizing the re-
sponse to weak external signals in nonlinear dynamical
systems. Second, it has connection with some biological
mechanisms. So extensive work has been done in this par-
ticular field [11–13], which show the large number of ap-
plications in science and technology, ranging from pale-
oclimatology [14,15], to electric circuits [16], lasers [17],
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chemical systems [18,19] and the connection with some
situations of biological interest (noise-induced information
flow in sensory neurons in living systems, influence in ion-
channel gating or in visual perception) [20–22].

Now it is important to note that a majority of such
studies on the mean first passage time and the SR, have
been done considering that the noise was Gaussian. How-
ever, some experimental results in sensory systems, par-
ticularly for one kind of crayfish [23] as well as recent
results for rat skin [24], offer strong indications that the
noise source in these systems could be non-Gaussian. An-
other recent study on neural networks also points in this
direction [25]. Recent detailed studies on the source of
fluctuations in some biological systems clearly indicate
that both noise sources in general are non-Gaussian and
their distributions are bounded [26]. However, very re-
cently Fuentes et al. [27] showed that the stochastic reso-
nance can be enhanced when the subsystem departs from
Gaussian behaviour and the system shows marked “ro-
bustness” against noise tuning, i.e., the signal-to-noise
ratio curve can flatten when departing from Gaussian be-
haviour, implying that the system does not require fine
tuning of the noise intensity in order to maximize its re-
sponse to a weak external signal. This theoretical finding
was verified experimentally by Castro et al. [28]. Fuentes
et al. [29] also studied the effect of non-Gaussian noise
on MFPT in the over damped limit. The objective of
the present paper is to enquire whether the non-Gaussian
noise can play a significant role in the context of mean
first passage time in the weak damping region.
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To begin with we consider a stochastic process in the
phase space. The relevant Langevin equation of motion
can be written as

ẋ = p (1)

ṗ = −V ′(x) − γp + η. (2)

Here x and p correspond to position and momentum of
the triggered particle. V (x) in equation (2) is the potential
energy of the particle. For the present problem we choose
V (x) as

V (x) =
1
4
x4 − 1

2
x2. (3)

To consider the effect of dissipation γ is used in equa-
tion (2). The last term in the equation (2) is due to exter-
nal colored non-Gaussian random force. Time evolution of
the random force η is given by

η̇ = − η

τ(1 + α(q − 1)η2/2)
+

1
τ

ζ(t) . (4)

Parameter q is used in the above equation to consider
the deviation from Gaussian characteristic of the noise.
Clearly, when q → 1 we recover the limit of η being a
Gaussian colored noise. Here τ is the noise correlation time
and ζ(t) corresponds to the Gaussian white noise which
has the following properties:

〈ζ〉 = 0 (5)

and
〈ζ(t)ζ(t′)〉 = 2Dδ(t − t′) (6)

D is the noise strength. α in equation (4) is given by

α =
τ

D
· (7)

Thus equations (1–2) and equation (4) correspond to
the case of diffusion of a particle in a potential V (x), in-
duced by η, a colored non-Gaussian noise. The stationary
probability distribution for the stochastic variable η and
q > 1 is given by [28,29]

P st
q (η) =

1
Zq

[1 + α(q − 1)η2/2]−1/(q−1), (8)

with η(−∞,∞) and Zq in the above equation refers to the
normalization factor having value

Zq = { π

α(q − 1)
}1/2 Γ (1/(q − 1) − 1/2)

Γ (1/(q − 1))
· (9)

Here Γ indicates the Gamma function. Although the
above distribution function extends to ±∞, it does not
exist for q ≥ 3 (since Zq diverges for q ≥ 3) while the
second moment diverges for q ≥ 5/3 [29]. However, for
q < 1 we have a cut-off distribution function [29] of the
following form

P st
q (η) =

{
1

Zq
[1 − ( η

w )2]1/(1−q) if |η| < w,

0 otherwise
(10)
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Fig. 1. Plot of the mean first passage time 〈T 〉 vs. q for the
parameter sets: (a) τ = 1.0, γ = 0.6 (b) τ = 1.0, γ = 0.5,
(c) τ = 0.75, γ = 0.5. D = 0.1 is used for all the curves. (Units
are arbitrary.)

with the cut-off value given by w = [(1 − q)α/2]1/2 and
the normalization factor being

Zq = { π

α(q − 1)
}1/2 Γ (1/(q − 1) + 1)

Γ (1/(q − 1) + 3/2)
· (11)

Here one more important point to be noted to distinguish
the regions between q ≥ 1 and q < 1 is that the correlation
function of η in the stationary regime can be fitted by an
exponential decay for q ≤ 1, while for q > 1 it is fitted by
Tsallis exponential [29].

We are now in a position to calculate the mean first
passage time (MFPT). Here we consider the diffusion of
a particle in a double well potential (3). The mean first
passage time of interest is the time it takes the particle to
go from one of the potential minima to the other when the
transition is driven by the non-Gaussian fluctuations. To
calculate 〈T 〉 we solve equations (1–2) and equation (4)
simultaneously using Heun’s method. In our simulations
we follow the dynamics of each particle starting in the
left well at x(t = 0) = −1.0 until it arrives in the right
well at x(t = T ) = 1.0 for the first time. We then calcu-
late 〈T 〉, that is, the average of T over many (say, 5,000)
realizations. To examine how the departure of Gaussian
characteristic of the color noise effects the 〈T 〉, we have
calculated 〈T 〉 for different q. The results are shown in
Figure 1. This calculation implies that the mean first pas-
sage time decreases with increasing non-Gaussian behav-
ior (q > 1) of the noise and ultimately reaches a limiting
value for a given set of values of noise strength, noise corre-
lation time and damping constant. Thus the barrier cross-
ing rate is accelerated by increasing deviation from Gaus-
sian characteristic of the colored noise up to certain value.
This is due to the fact that with increasing non-Gaussian
behavior(q > 1) effective noise strength and noise correla-
tion time are increased (denominator of the first term of
the right hand side of Eq. (4) increases with an increase
of q) [29]. Since the diffusion of a particle is accelerated
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Fig. 2. Plot of 〈T 〉 vs. γ for τ = 1.0, D = 0.1 and (a) q = 1.0,
(b) q = 1.9. (Units are arbitrary.)

by the former and retarded by the latter, for a large de-
viation from Gaussian behavior the interplay of these two
quantities gives a limiting value of the MFPT. Therefore
the limiting value of 〈T 〉 is obtained at a higher value of q
for smaller τ (curves (b) and (c) of Fig. 1) and for differ-
ent values of the dissipation parameter γ at the same q
for a given external noise strength (curves (a) and (b) of
Fig. 1). However, for a large deviation from Gaussian be-
haviour (q > 1) understanding of the diffusion behaviour
as well as MFPT and stochastic resonance of the non-
Gaussian noise driven system is very difficult since the
second moment and the correlation time of the external
non-Gaussian noise diverge (for details see the Ref. [29]).
In this regime our preliminary numerical experiment sug-
gests that in some region of phase space the particle may
be trapped for an infinite time or it escapes from some
region of phase space within a very short time.

The effect of the damping constant γ on the 〈T 〉 shows
a significant difference for Gaussian and non-Gaussian
noise driven processes. For the Gaussian noise driven
process 〈T 〉 increases almost exponentially with the in-
crease of γ [29] but in the case of the non-Gaussian noise
driven process 〈T 〉 increases linearly as shown in Fig-
ure 2. Here both the Gaussian and non-Gaussian noise
driven systems correspond to the thermodynamically open
systems (noise and dissipation are not related through
a fluctuation-dissipation relation). Although the external
noise strength (D) is same for both the curves (a) and (b)
of Figure 2, the effective noise strength is higher for non-
Gaussian noise driven system and because of this MPFT
increases more slowly with an increase of the damping
constant γ than the Gaussian noise driven system. A sim-
ilar feature is also found in the variation of the mean first
passage time with noise correlation time τ and it is shown
in Figure 3. Since the effective noise strength decreases
more slowly with the increase of the noise correlation time
for the non-Gaussian noise driven system than the Gaus-
sian noise driven system by virtue of equation (4), 〈T 〉
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Fig. 3. Plot of 〈T 〉 vs. τ for γ = 0.5, D = 0.1 and (a) q = 1.0,
(b) q = 1.9. (Units are arbitrary.)
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Fig. 4. Plot of 〈T 〉 vs. D for γ = 0.5, τ = 1.0 and (a) q = 1.0,
(b) q = 1.9. (Units are arbitrary.)

increases more slowly for the former system than for the
latter system [30].

To examine the effect of noise strength D on 〈T 〉 we
have calculated it for different values of D. The results
are illustrated in Figure 4. The decrease of 〈T 〉 with an
increase of D mimics the exponential decay as shown by
Fuentes et al. [29] in the overdamped case. With the in-
crease of the external noise strength D the effective noise
strength as well as the effective noise correlation time are
increased for the non-Gaussian noise driven system. Since
noise strength and noise correlation time act on the dif-
fusion of a particle in opposite directions, for large D the
effect of increased noise strength is balanced by increased
correlation time and hence with the increase of D the dif-
ference of MFPT for the Gaussian and non-Gaussian noise
driven systems decreases as shown in Figure 4. Thus the
interplay of γ and τ implies that the non-Gaussian noise is
more effective than that for the Gaussian noise in the bar-
rier crossing dynamics when the external noise strength is
small.
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In the present paper we have presented a numerical study
for the first passage time problem in systems driven by
non-Gaussian colored noise. We have considered the first
passage of a particle that evolves in a potential from
one well over the barrier to the other well. Our calcu-
lated results indicate that the mean first passage time
decreases monotonically to a limiting value with increas-
ing non-Gaussianity of the noise. The present calcula-
tion also implies that 〈T 〉 increases linearly with the in-
crease of damping constant or noise correlation time for
the non-Gaussian noise driven process but the increasing
behavior is almost exponential in nature in the Gaussian
noise driven process. The present study also indicates that
the difference of MFPT for Gaussian and non-Gaussian
noise driven systems decreases with increase of the ex-
ternal noise strength. Since a number of recent studies
have shown that the non-Gaussian noise driven systems
are concerned in many situations in biology, we hope that
our present observations will be useful support to the ex-
perimental findings.

The author expresses his deep sense of gratitude to Prof. D.S.
Ray for his kind attention throughout its progress. The author
is also thankful to the DST, Government of India for financial
support through the FIST programme.

References

1. H.A. Kramers, Physica 7, 284 (1940)
2. N. Wax, Selected Papers on Noise and Stochastic Process

(Dover, New York, 1954)
3. R.L. Stratonovich, Topics in the Theory of Random Noise

(Gordon and Breach, New York, 1963)
4. C.W. Gardiner, Handbook of Stochastic Methods for

Physics, Chemistry, and the Natural Science (Springer-
Verlag, Berlin, 1983)

5. H. Risken, The Fokker-Planck Equation: Methods of Solu-
tion and Applications (Springer-Verlag, Berlin, 1984)

6. P. Hänggi, H. Talkner, M. Borkovec, Rev. Mod. Phys. 62,
251 (1990)

7. S. Redner, A Guide to First Passage Processes (Cambridge
University Press, Cambridge, 2001)

8. J. Ray Chaudhuri, B.C. Bag, D.S. Ray, J. Chem. Phys.
111, 10852 (1999)

9. J. Ray Chaudhuri, S.K. Banik, B.C. Bag, D.S. Ray, Phys.
Rev. E 63, 061111 (2001)

10. D. Banerjee, B.C. Bag, S.K. Banik, D.S. Ray, Phys. Rev.
E 65, 021109 (2002)

11. Proceedings of the NATO Advance Workshop on Stochastic
Resonance in Physics and Biology, edited by F. Moss et al.,
J. Stat. Phys. 70 (1/2) (1993)

12. Proceedings of the Second International Workshop on Fluc-
tuations in Physics and Biology, edited by A. Bulsara
et al., Nuovo Cim. D 17 (1995)

13. L. Gammaitioni, P. H’́anggi, P. Jung, F. Marchesoni, Rev.
Mod. Phys. 70, 223 (1988)

14. R. Benzi, A. Sutera, A. Vulpani, J. Phys. A 14, L453
(1981)

15. C. Nicolis, Tellus 34, 1 (1982)
16. R.N. Mantegna, B. Spagnolo, Phys. Rev. E 49, R1792

(1994)
17. J.M. Iannelli, A. Yariv, T.R. Chen, Y.H. Zhuang, Appl.

Phys. Lett. 65, 1983 (1994)
18. A. Guderian, G. Dechert, K. Zeyer, F. Schneider J. Phys.

Chem. 100, 4437 (1996)
19. V. Petrov, Q. Ouyang, H.L. Swinney, Nature 388, 655

(1997)
20. J.K. Douglas, L. Wilkens, E. Pantazelou, F. Moos, Nature

365, 337 (1993)
21. S.M. Bezrukov, I. Vodyanoy, Nature 378, 362 (1995)
22. F.M. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty,

F. Moos, Phys. Rev. Lett. 78, 3 (1995)
23. K. Wiesenfeld, D. Pierson, E. Pantazelou, Ch. Dames, F.

Moss, Phys. Rev. Lett. 72, 2125 (1994)
24. D. Nozaki, D.J. Mar, P. Grigg, J.J. Collins, Phys. Rev.

Lett. 82, 2125 (1994)
25. G. Mato, Phys. Rev. E 59, 3339 (1999)
26. A. Manwani, Ph.D. thesis, Caltech (2000)
27. M.A. Fuentes, R. Toral, H.S. Wio, Physica A 295, 114

(2001)
28. F.J. Castro, M.N. Kuperman, M. Fuentes, H.S. Wio, Phys.

Rev. E 64, 051105 (2001)
29. M.A. Fuentes, R. Toral, H.S. Wio, Physica A 303, 91

(2002)
30. C. Mahanta, T.G. Vankates, Phys. Rev. E 58, 4141 (1998)


